• Saltar a la navegación principal
  • Saltar al contenido principal
NMRMBC Research Group

NMRMBC Research Group

Advanced NMR Methods and Metal-Based Catalysts - University of Almería

  • Home
  • Research
  • Projects
  • Team
  • Gallery
  • Solutions
  • List of Publications
    • Current Research
    • Previous Research
    • Covers
  • Contact
Usted está aquí: Inicio / Referencias del proyecto «Early detection of colorectal cancer through nmr metabolic biomarkers and advanced predictive models (METABLOOM)»

Referencias del proyecto «Early detection of colorectal cancer through nmr metabolic biomarkers and advanced predictive models (METABLOOM)»

References

1. Araghi M, et al. Global trends in colorectal cancer mortality: projections to the year 2035. J. Cancer. 2019; 144: 2992-3000.

2. Lin, J.S.; Piper, M.A.; Perdue, L.A.; Rutter, C.M.; Webber, E.M.; O’Connor, E.; Smith, N.; Whitlock, E.P. Screening for Colorectal Cancer: Updated Evidence Report and Systematic Review for the US Preventive Services Task Force. Am. Med. Assoc. 2016; 315: 2576–2594.

3. Bray F, et al. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer. Clin. 2018; 68: 394-424.

4. Guren MG. The global challenge of colorectal cancer. Lancet Gastroenterol. Hepatol. 2019; 4: 894-895.

5. Morano F, Sclafani F. Duration of first-line treatment for metastatic colorectal cancer: Translating the available evidence into general recommendations for routine practice. Rev. Oncol. Hematol. 2018; 131: 53-65.

6. Illiano P, et al. The mutual interplay of gut microbiota, diet and human disease. FEBS J. 2020; 287: 833-855.

7. Das V, et al. Predictive and prognostic biomarkers in colorectal cancer: A systematic review of recent advances and challenges. Pharmacother. 2017; 87: 8-19.

8. Cheung AH, et al. Latest development of liquid biopsy. Thorac. Dis. 2018; 10: S1645-S1651.

9. Maierthaler M, et al. Plasma miR-122 and miR-200 family are prognostic markers in colorectal cancer. J. Cancer. 2017; 140: 176-187.

10. Galamb O, et al. Diagnostic and prognostic potential of tissue and circulating long non-coding RNAs in colorectal tumors. World Gastroenterol. 2019; 25: 5026-5048.

11. Wishart, D. S. Emerging applications of metabolomics in drug discovery and precision medicine. Rev. Drug Discov. 2016; 15(7): 473-484.

12. Vignoli, A. et al. High-Throughput Metabolomics by 1D NMR. Chem., Int. Ed. 2019; 58(4): 968-994.

13. Takis, P.G. et al. Uniqueness of the NMR Approach to Metabolomics. Trac-Trends Anal. Chem. 2019; 120: 115300.

14. Gu J, et al. Metabolomics analysis in serum from patients with colorectal polyp and colorectal cancer by 1H-NMR spectrometry. Markers. 2019; 3491852.

15. Zamani Z, et al. A metabolic study on colon cancer using 1H nuclear magnetic resonance spectroscopy. Res. Int. 2014; 2014: 1-7.

16. Hu R, et al. NMR-based metabolomics in cancer research. Springer; 2021: 201-218.

17. Jiménez B, et al. 1H HR-MAS NMR spectroscopy of tumor-induced local metabolic “field-effects” enables colorectal cancer staging and prognostication. Proteome Res. 2013;12(2): 959-968.

18. Monleón D, et al. Metabolite profiling of fecal water extracts from human colorectal cancer. NMR Biomed. 2009; 22(3): 342-348.

19. Bezabeh, T. et al. Detecting colorectal cancer by 1H magnetic resonance spectroscopy of fecal extracts. NMR Biomed. 2009, 22, 593−600.

20. Brezmes, J. et al. Urine NMR Metabolomics for Precision Oncology in Colorectal Cancer. J. Mol. Sci. 2022; 23(19): 11171.

21. Wang, Z. et al. J. NMR-Based Metabolomic Techniques Identify Potential Urinary Biomarkers for Early Colorectal Cancer Detection. Oncotarget 2017; 8: 105819–10583.

22. Kim, E.R. et al. Urine-NMR Metabolomics for Screening of Advanced Colorectal Adenoma and Early Stage Colorectal Cancer. Rep. 2019; 9: 4786.

23. Eisner, R. et al. Machine-Learned Predictor of Colonic Polyps Based on Urinary Metabolomics. Res. Int. 2013; 2013: 303982.

24. Liesenfeld, D.B. et al. Changes in Urinary Metabolic Profiles of Colorectal Cancer Patients Enrolled in a Prospective Cohort Study (ColoCare). Metabolomics 2015; 11: 998–1012.

25. Vahabi F, et al. Staging of colorectal cancer using serum metabolomics with 1H NMR spectroscopy. Iran J. Basic Med. Sci. 2017; 20(7): 835-840.

26. Martín-Blázquez A, et al. Untargeted LC-HRMS-based metabolomics to identify novel biomarkers of metastatic colorectal cancer. Rep. 2019; 9(1): 20198.

27. Tristán, AI. et al. Serum nuclear magnetic resonance metabolomics analysis of human metastatic colorectal cancer: Biomarkers and pathway analysis. NMR Biomed. 2023, e4935, 1-17.

28. Salmerón AM. et al. Serum colorectal cancer biomarkers unraveled by NMR metabolomics: past, present, and future. Anal Chem. 2022; 9(1): 417-430.

29. Rath, C. M. & Dorrestein, P. C. The bacterial chemical repertoire mediates metabolic exchange within gut microbiomes. Microbiol. 2012; 15: 147–154.

30. Rinninella, E. et al. What is the Healthy Gut Microbiota Composition? A Changing Ecosystem across Age, Environment, Diet, and Diseases. Microorganisms 2019; 7: 14.

31. Valdes, A. M. et al. Role of the gut microbiota in nutrition and health. BMJ 2018, 361: k2179.

32. Dalal, N. et al. Gut microbiota-derived metabolites in CRC progression and causation. Cancer Res. Clin. Oncol. 2021; 147, 3141–3155.

33. Feng, Q. et al. Gut Microbiota: An Integral Moderator in Health and Disease. Microbiol. 2018; 9, 151.

34. Sinha A. et al. Systematic Review and Meta-Analysis: Taurine and Its Association With Colorectal Carcinoma. Cancer Med. 2024; 13: e70424.

35. Baidoun, F. et al. Colorectal Cancer Epidemiology: Recent Trends and Impact on Outcomes. Curr. Drug Targets 2021; 22: 998–1009.

36. Siegel, R. L. et al. Colorectal cancer statistics, 2020. CA. Cancer J. Clin. 2020; 70: 145–164.

37. Hultcrantz, R. Aspects of colorectal cancer screening, methods, age and gender. Intern. Med.; 2021, 289: 493–507.

38. Beckonert O. et al. Metabolic profiling, metabolomic and metabonomic procedures for NMR spectroscopy of urine, plasma, serum and tissue extracts. Protoc. 2007; 2(11): 2692-2703.

39. Tristán, AI. et al. Metabolomic profiling of COVID-19 using serum and urine samples in intensive care and medical ward cohorts, Rep. 2024; 14: 23713.

40. Abreu, AC. et al. NMR-based Metabolomics and Fatty Acid Profiles to Unravel Biomarkers in Preclinical Animal Models of Compulsive Behavior. Proteome Res. 2022; 21: 612–622.

41. Salmerón AM. et al. Urinary metabolic biomarkers of attentional control in children with Attention-Deficit/Hyperactivity Disorder: a dimensional approach through 1H NMR-based metabolomics. NMR Biomed. 2025, submitted.

42. Ruiz-Sobremazas, D. et al. From Nutritional Patterns to Behavior: High-Fat Diet Influences on Inhibitory Control, Brain Gene Expression, and Metabolomics in Rats. ACS Chem. Neurosci. 2024; 15: 4369−4382.

43. Salmerón, AM. et al. Exploring microbiota-gut-brain axis biomarkers linked to autism spectrum disorder in prenatally chlorpyrifos-exposed Fmr1 knock-out and wild-type male rats. Toxicology 2024; 506: 153871.

44. Salmerón, AM. et al. Solution NMR in human embryo culture media as an option for assessment of embryo implantation potential. NMR Biomed. 2021; 34: e4536.

Do you have any questions? Contact our Research GroupSpeak with us now →

Advanced NMR Methods and Metal-based Catalysts © 2025 · Legal Notice · Privacy Policy · Cookies